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Abstract-The effect of upper surface boundary conditions on the flow structure in shallow cavities with 
differentially heated end-walls is examined. Matched asymptotic solutions, valid for small cavity aspect 
ratios are presented for the following cases; uniform shear stress with zero heat flux, uniform heat flux 
with zero shear stress, and heat flux linearly dependent on surface temperature with zero shear stress. It is 
shown that these changes in surface boundary conditions have an important influence on the temperature 

and flow structure within the cavity. 

A, 

B, 

NOMENCLATURE 

aspect ratio, = h/l; 

dimensionless shear parameter 

= lro/h’(Th - 73% ; 

’ tit ci, coefficients which are functions of Gr and Pr ; 

5, heat capacity; 

F(y), y5/120- 5y4/192 +y3/48; 

f(T), surface heat flux; 

Gr, Grashof number, = bg( G - T,)h3/v2; 

H, scaled thermal exchange coefficient, 
= Kh/kA2; 

h, cavity depth; 

K effective thermal exchange coefficient; 
K1, K2, core solution parameters; 

k, thermal conductivity; 

1, cavity length; 

1’9 characteristic length for surface heat transfer; 

Nu, 
‘a3 

Nusselt number, = - 
s I 08x x=0 

dy; 

Pr, Prandtl number, = cp p/k ; 
Q* scaled surface heat flux, = qh/kA2( T,, - T,); 

49 surface heat flux ; 
T,, Th, cold- and hot-end wall temperatures; 

T,> equilibrium temperature for surface heat 
transfer; 

u*, slip velocity; 

x> Y, Cartesian coordinates nondimensionalized 

byh; 
* 

X, Ax. 

Greek symbols 

B> coefficient of thermal expansion; 

&, ,/(Khlk) ; 

fI? (1 -Y); 
0 

0,’ 

(I-0); 

(T- T,)/(T, - T,); 

u viscosity; 

v, kinematic viscosity; 

5, horizontal distance from hot end of cavity, 
= A-‘-x; 

core variable for semi-infinite cavity, = ~5; 

surface kinematic shear stress; 
hot end vorticity; 
vorticity ; 

hot end stream function; 
stream function. 

1. INTRODUCTION 

IT HAS become a common practice to use estuaries and 

other bodies of water for the disposal of the waste heat 
that arises as a by-product of fossil and atomic fuel 
electric power generation. Similarly, sewage treatment 
plants often discharge high concentrations of organic 
pollutants directly into estuaries and coastal waters. 
Although such dumping may be safely carried out, it is 
important to take proper consideration of its impact 

on the biochemical processes that depend critically on 
the water temperature and purity. As a first step toward 
understanding the biological impact, laboratory and 

field experiments have established practical tempera- 
ture and toxicity limits, beyond which the biological 

processes are impaired. However, before outfall systems 
can be designed so that these limits are not exceeded, 
it is necessary to understand more fully the mechanisms 
by which these wastes are dispersed within the body of 
water. 

Estuaries which are shallow (depth much smaller 

than length) and have strong enough vertical mixing 
to prevent the formation of density wedges. often 
exhibit a density distribution which is vertically 
uniform but which varies approximately linearly in the 
horizontal direction. An excellent naturally occurring 

example is Shark Bay on the West Australian coast 
(Logan and Cebulski Cl]). More commonly, perhaps, 
the horizontal gradient may be established as a result 
of man-related heat input near the end of the estuary. 
In either case, the slow gravitational circulation, in- 
duced by the horizontal density gradient, can contri- 
bute significantly to the longitudinal dispersion of 
pollutants, mainly by the mechanism of Taylor diffu- 
sion (Fischer [2]). 
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FIG. 1. Schematic diagram of the cavity 

A complete dynamic model of an estuary such as 
Shark Bay would, of course, be very complex. The 
geometry of the estuary is complicated, and the flow 
is turbulent and generally coupled with the tidal cycle. 
Furthermore, various regions of the flow field are 

controlled by processes occurring on very different 
length scales. In the immediate vicinity of the source 
(for example, near the discharge of heated fluid from a 
power plant) the problem is dominated by the details 

of the source geometry, and the local mixing processes 
(cf. Harleman and Stolzenbach [3]). Covering a much 
wider area beyond this so-called “near-field” region, 

is the region of interest in the present work, namely 
the “far-field,” where the primary transport mechanisms 

are bulk diffusion and convection. In this region, the 
detailed velocity and density fields are relatively insensi- 
tive to the source configuration. In addition, since the 
time scale of the gravitational circulation in the far-field 
is large, the influence of the tidal cycle and other un- 
steady variations of velocity on the mean circulation in 

the estuary may be taken into account by the use of 
effective eddy exchange coefficients (Imberger [4]). 
Thus, considerable insight into the basic far-field flow 
structure can be obtained from the idealized problem 
of laminar flow in a shallow two-dimensional cavity 
with differentially heated end walls. 

Investigations into the problem ol’natural convection 
in two-dimensional cavities have been extensive. Most 
theoretical studies have focused on numerical solutions 

of the full equations of motion, subject to the 
Boussinesq approximation, for cavities which are either 
square or have a depth, h, larger than their length, I 
(cf. Quon [S], Wilkes and Churchill [6], Newell and 
Schmidt [7] and DeVahl Davis [8]). Notably, these 
studies have not dealt specifically with the case of small 

aspect ratio (A = h/l cc 1) which is relevant to the 
estuary circulation problem. In a recent paper, 
Cormack, Lea1 and Imberger [9] provided an analytical 
description of the convective motion of a Newtonian 
fluid in a two-dimensional enclosed cavity with a rigid, 
no-slip, insulating lid for the limiting case A --t 0, with 
fixed values of the Grashof number, Gr. The basic 
features of shallow cavity flow, as predicted by this 
theory, were subsequently verified both by numerical 
solutions of the full equations of motion (Cormack, 
Lea1 and Seinfeld [lo]), and by experimental measure- 
ments (Imberger [4]). 

As explained by Imberger [4], the no-slip insulating 
boundary was the only surface condition for which 

reliable laboratory data could be obtained, and this 
motivated its use in our previous analytical investiga- 
tion. Clearly, this condition is quite different from that 
relevant to an open surface estuary, and the effect of 
this difference upon the circulation dynamics is not 

obvious. It is the purpose of the present study to 
investigate this question for the more realistic condi- 

tions of an imposed surface shear stress (due, for 
example, to a surface wind stress) and surface heat 
transfer. The analysis will show that these modifications 
of the boundary conditions can have a very significant 

effect on the Nusselt number (and hence on the 

longitudinal dispersive capacity of the cavity) as well 
as on the form of the velocity and temperature profiles 
for A + 0, with other parameters held fixed.* 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

The system that we consider is shown schematically 
in Fig. 1. It consists of a cavity of length, 1, and height, 
h, that contains a Newtonian fluid. The end walls are 

held at different, but uniform temperatures, T, and &, 

with T, < Th. The bottom of the box is insulated and 
the end walls and bottom are rigid, no-slip boundaries. 

At the upper surface, the kinematic shear stress is 
assumed to have some uniform value, ze, and the heat 
flux is given as a function of the surface temperature, 

.f(r). 
Subject to the usual Boussinesq approximation, the 

steady-state equations governing this system may be 

expressed (see [9]) as 

G,-AZ !!!?!k! = 47zw + !! 
qx, Y) SX 

v2* = --w 

PrGrAz = V’t’ 
/ 3’ 

with boundary conditions 

* = 0, g = 0, 0=Ax on x=O,A 

$=O, $0; B=o 
l?y 

on y=O 

-1 

(1) 

(2) 

(3) 

1 

(4) 

*In contrast, for Gr -+ co, A fixed, the recent numerical 
solutions of Quon [5] indicate that the upper surface condi- 
tion for the velocity plays a less important role, at least in 
determining Nu. 
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and 

a3 MT) 
- = ___ on y = 1. (5) 
8Y W-T,) 

To nondimensionalize these equations, we have used h 
as the characteristic length scale, and &(&- ~)~3/v~ as 
the characteristic velocity. Although perhaps not 
obvious, this velocity scaling is the most convenient 
choice for the present problem, where the basic flow 
structure is found to consist of a buoyancy driven 
parallel flow which is moderated by viscous effects over 
a length 1. At any rate, it may be justified a posteriori 
by the theory which is presented in this paper. The 
dimensionless parameters which appear in the equa- 
tions (l)-(3) are the Grashof number Gr, the Prandtl 
number Pr, and the cavity aspect ratio. The additional 
dimensionless parameters introduced as a result of the 
surface conditions (5), will be discussed in the body of 
the paper. 

3. THE NO-SLIP, INSULATED CAVITY 

Before the general case represented by (5) is con- 
sidered, it is useful to summarize the basic analytical 
techniques and results obtained in [9], for the no-slip 
insulated cavity. The key simplifying feature in this 
case is the assumption, supported by experimental 
observation, that the length scale for horizontal change 
in the central region of the cavity is O(A)-‘, while 
the scale for horizontal change near the end walls is 
only O(1). Because this disparity in length scales 
increases as A -+ 0, an analytic solution to (l)-(5) may 
be obtained using the standard methods of matched 
asymptoti~expansions, in the limit A -+ 0 with the other 
parameters held fixed. Analytically, the cavity is de- 
composed into three parts, a core region of extent 
0(.4-i) in the center of the cavity, and two end regions 
within an 0( 1) distance of the end walls. The solutions 
in the three regions are coupled by the matching re- 
quirements in the regions of overlap. 

The core solution is easily obtained by introducing 
the scaling 

.$ = Ax (6) 

into the governing equations and boundary conditions 
(l)-(5), and expanding the streamfunction and tempera- 
ture as regular series in the small parameter A 

$ = ~~~d~~+~2~~+... 

B=8,+dB,+A28,+.... 1 
(7) 

The resulting solution is 

ri/ = K1(y4/24- y3/12+ y2/‘24) (8) 

0 = IC,P~fi;:GrPrA~(y~/12O-y~/4~~~~~/72)+~~ (9) 

where 

K, = c,+dc,+A2c3+... 

rc, = c;-kAc;fA=cj+.... 
(10) 

I I 

The coefficients clrc2,. . . ,ci,cz,. . . are determined 
by matching the core solution with solutions valid in the 
end regions. Because of the symmetry of equations 
(l)-(4) and the no-slip, insulated boundary conditions, 
the coefficients ci can be eliminated in favor of the 
single set ci, so that the matching operation reduces to 
a consideration of solutions valid in the cold end of the 
cavity. Upon calculating the end region solutions and 
carrying out the matching, the coefficient Kr, governing 
the magnitude of the horizontal temperature gradient in 
the core, was found to be 

K1 = 1-3.48x 10-6G~ZP~2A3+O(G~4~~4A*) (11) 

while the Nusselt number, 

was shown to be of the form 

NM = A +2.86 x 10-6Gr2PrZA3 i-O(Gr2Pr2A4). (12) 

The corres~nding stream function representing the 
first order flow field in the (cold) end region is shown 
in Fig. 2(a). 

Solutions (8) and (9) indicate that the core flow for a 
no-slip insulated surface is parallel to all orders of 
magnitude in A, while, to first order in A, the tempera- 
ture is linear in P and independent of Y. Thus, to a first 
approximation, the end regions are isothermal and the 
driving force for convection is associated with the 
horizontal gradient of B in the core. The end regions 
serve mainly to turn the core flow through 180” as 
required by the condition of zero volume flux through 
the end walls. In these features the flow associated with 
the limit A -+ 0 with Gr fixed (though perhaps large) is 
f~damentally different from that appropriate to the 
limit A fixed (though perhaps small) and Gr -+ CD which 
was studied by Gill [ll]. In the latter case, nearly all 
of the temperature drop occurs in thin end wall 
boundary layers and the corresponding gradients con- 
stitute the primary driving force for fluid motion. In 
particular, the core llow exists only as a consequence of 
the entrainmentdetrainment process associated with 
the end wall boundary layers. 

It is also significant that the longitudinal heat-transfer 
process in the present case is dominated by conduction 
[cf. equations (9) and (12)], and that this occurs for any 
arbitrary Crashof number provided only that A is made 
sufficiently small. Clearly, the problem considered here 
differs in a f~damental way from the usual conduction 
limit A fixed, Gr 10. In the present case, as A is 
decreased the horizontal scale of the cavity increases 
relative to its depth so that even the small viscous 
contributions associated with a large value of Gr can 
eventually become important and effectively “throttle” 
the flow, thus enhancing conduction compared with 
convection in the core region. 

Finally, it may be noted that the higher order 
conuectiae contributions to (9) and (12) are a result of 
the Taylor diflusion mechanism which has been 
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(c) Zero shear. 
FIG. 2. Streamlines in cold end. 
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recently reviewed in the context of cavity and estuary 
flows, by Fischer [ 12l.f 

In the following sections we consider the changes 
in flow structure which occur as the no-slip, insulated 
upper surface conditions are replaced by the conditions 

(5). 

4. ASYMPTOTIC VELOCITY AND TEMPERATURE FIELDS 
WITH AN IMPOSED SURFACE SHEAR STRESS AND 

ZERO HEAT FLUX 

The logical extension of the no-slip upper surface, 

which was discussed in [9] and summarized in the 
previous section, is the case of an imposed, uniform 

shear stress, zO. The problem differs from the previous 
one only in the condition 

r?2* 43 ---------=B on y=i 
p- h2G - Ku% 

(13) 

which replaces the no-slip condition, &j/~?y = 0. In 
natural estuaries, z,, could be interpreted as the time- 
and space-averaged value of the surface wind shear 
stress. In that case, a typical range for T,, would be 
0- 10cm2/s2 (cf. Lumley and Panofsky [ 13]), which 

leads to the estimate 0 ,< IBI 6 2 in Shark Bay. The 
dimensionless parameter B provides a measure of the 

relative magnitudes of the surface shear force and the 
characteristic buoyancy force in the cavity. When 
B c 1, the buoyancy forces are dominant and the 
problem is equivalent to the case to = 0. On the other 

hand, for B >> 1, the shear forces are dominant and the 
problem is a forced convection flow to first approxima- 
tion. It is the intermediate case, B - O(l), which we will 
pursue here. The analysis follows that in [9] fairly 
closely. Thus, in the interest of brevity, we omit the 
details of the end region solutions and of the matching. 
The relevant techniques are demonstrated in the 

Appendix for the somewhat simpler but representative 
case of B = 0. Here, we shall concentrate on the solu- 
tions themselves rather than on the methods used to 

obtain them. 

In the core region, 

where K, and Kz are polynomials in A. The coeffi- 
cients of K1 and K2 depend on Gr, Pr, A and B, and 
are determined by matching (14) and (15) with the 

solutions in the two end regions. The principal feature 
of interest in the latter (end region solutions) is the fact 

that the surface shear stress yields only a simple additive 
contribution at first order in A. 

+ = +c,+B&+O(A). 

tThe convective terms in these equations can, in fact, be 
reproduced using the general equations (10) and (12) of 
Fischer’s paper. 
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The first term, I,+,,, is simply the r0 = 0 solution outlined 
in the Appendix. The second term, go, which is directly 
att~butable to the imposed surface shear stress, was 
obtained numerically. The governing equation and 
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boundary conditions are 

v4iJo = 0 

$,=O on x=0 on y=O,l 

840 $=O on y=O; ==Oon 

a% 
-=l on y=l. 
?Y 

x=o,co 

(16) 

t 

(17) 

J 
The numerical scheme closely resembled that described 
in the Appendix for rjO. Typical streamlines for I,&* are 
presented in Fig. 2(b). 

To determine K1 and Nu to 0(A3), in addition to the 
five end region temperature corrections obtained in the 
Appendix for z0 = 0, three additional corrections had 
to be calculated; one at O(A’) and two at O(.43). The 
resulting expression for K,, correct to O(A3), is 

Ki = 1 -Pr2Gr2A3(19.16x W6-2536 x 1O-4B 

+8550x 10-4BZ)+O(~4). (18) 

Similarly, the Nusselt number (12) is modified to 

Nh, = A+Pv2Gr2A3(13~10x 10-6- 1.736 x 10-4B 

+ 5952 x Io-4B2)+o(~4). (19) 

Our primary interest in the results of the preceding 
analysis is with the qualitative variations in flow struc- 
ture which are induced by changes in boundary condi- 
tions at the upper surface. Most relevant to the far-field 
aspects of estuary flows are the structure of the core 
flow and the magnitude of the first correction [O(A~)] 
to the Nusselt number, since the latter is a measure of 
the rate of longitudinal convective transport in the 
cavity. In this regard, the most important conclusion 
from the solutions (14)-(19) is the absence of any 
fundamental change in the flow structure for nonzero B. 
The parallel flow in the core region is preserved for 
any fixed value of B in the limit as A -+ 0. In addition, 
the temperature field, which is dominate at first order 
by the basic conduction mechanism, remains linear in 
the horizontal coordinate in all cases with the y- 
dependence of the temperature field (and therefore the 
vertical density strati~cation) entering only as a higher 
order, O(k), term. Finally, the fundamental Taylor 
diffusion mechanism which dominates the convective 
heat-transfer process in the core is again reflected in 
the basic forms of the temperature gradient, K,, and 
the Nusselt number. In spite of these basic similarities, 
however, the detailed temperature and velocity distri- 
butions vary substantially with changes in B, and these 
changes are accompanied by important variations in 
the capacity for longitudinal convective transport of 
heat. 

The most obvious variations in the core flow are 
those associated with the velocity profile. In Fig. 3 we 
compare the normalized velocity profiles for the no-slip 
boundary condition (y3/6 - y2/4 +y/I2) and the free 
shear condition (~~16 - 5y2/16 +y/8). Also plotted is the 

linearly additive shear induced velocity component 
(3y2/4-y/2). Most significant are the variations in 
magnitude. Clearly, the free shear condition allows 
uniformly larger values of the horizontal velocity than 
does the no-slip condition. The normalized shear- 
induced velocity component is larger by an order of 
magnitude than even the corresponding free-shear 
component. Thus even for relatively small values of B, 
an imposed shear stress may have a significant influence 
on the circulation rate within the cavity. A comparison 
of equations (11) and (12) with equations (18) and (19) 
(with B = 0) reveals that the increased magnitude of 
the core velocity in the free surface problem, as com- 
pared to the no-slip problem, results in a smaller core 
temperature gradient (K,), and an enhanced capacity 
for longitudinal transport of heat (Nu). In addition, the 
flow associated with a finite shear stress at the surface 
produces an additional correction to both K, and Nu 
whose sign depends on the magnitude and sign of B. 
It is especially significant that the convective contribu- 
tion to NU for the free surface case is approximately 
five times larger than the corresponding cont~bution 
for the no-slip problem, while the coefficients at O(B) 
and O(S’) are both larger than the O(1) coefficient by 
approximately an order of magnitude! Hence, even for 
small values of 8, the convective transport of heat by 
Taylor diffusion may bed~mi~l~~ed by the shear induced 
component of the Bow. 

The dependence of Nu on the shear parameter, B, is 
illustrated in Fig. 4, where the asymptotic solution for 
(No-~)isplotted~afunction ofGr2Pr2A3 for various 
values of B. For comparison, the small A asymptote and 
the corresponding experimental data of Imberger [4] 
for the no-slip upper surface are also included. Three 
points.are of special interest with regard to this figure. 
First, the asymptotic solution for (Nu- A) shows an 
absolute minimum for fixed Gr2PrZA3, at B = 0*1458. 
Second, comparison of the numerical solutions, experi- 
mental data and the asymptotic solution for the no-slip 
case seems to indicate that the asymptotic solutions will 
provide a reasonable approximation of the exact 
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FIG. 4. (Nu-A) YS Gr2Pr2A3. 

behavior for A3 < 105/Gr2Pr2. Thus, the degree of 

shallowness required for validity of the present theory 
(i.e. the required value of A) decreases with decreasing 
Gr. Third, in the alternate limit, Gr --) cc with A held 

fixed (though small) the experimental data for various 
values of A approach one of a set of straight lines 
with slope of l/8. This large Gr behavior is consistent 
with the boundary-layer analysis of Gill [l l] which 
predicts (in terms of the ordinate of Fig. 4) 

Nu = (CA 318) (Pr2Gr2A3)“8 (20) 

where c is a constant, independent of Gr, Pr and A. 
The numerical data of Quon [5] provide substantial 
evidence that the Nusselt number (and thus the 
constant, c) in this boundary-layer limit is the same 
for either a no-slip or free shear upper surface, in 
distinct contrast to the behavior in the present shallow 

cavity limit. Presumably, this difference reflects the 
fundamentally different physical processes governing 

the two limiting cases. 

5. ASYMPTOTIC VELOCITY AND TEMPERATURE 
FIELDS WITH ZERO SURFACE SHEAR STRESS 

AND SPECIFIED HEAT FLUX 

The discussion of Section 4 is intended to strongly 
emphasize the similarity in flow structure for the three 

kinematic surface conditions. In particular, the parallel 
nature of the core flow, the linearity of the temperature 
profiles and the similar form of the functions K, and Nu 
have been demonstrated. In contrast, the introduction 
of a heat flux at the top of the cavity can produce a 
fundamental change in the flow structure. For example, 
in the case of strong surface cooling, one would expect 
the slightly stable stratification that is produced in the 
insulated surface cases, to be destroyed. Ultimately, if 
the surface cooling is much greater than the total 
rate at which heat would be transferred through the 
end walls in the absence of surface cooling, a strongly 
unstable stratification must result, necessitating a major 

change in flow structure. For example, under approp- 
riatecircumstances, such cooling may lead to a modified 
“Benard” convection. In the alternate instance of strong 
surface heating, the slightly stable stratification of the 
insulated case would be intensified, thus tending to 
restrict free (vertical) movement of the fluid and cause 
a form of blocking as the stably stratified fluid en- 

counters the end walls. 
In considering these changes, it is convenient to 

associate the nonzero surface heat flux with a new 
length scale I’, which is the distance required to 
transfer an amount of heat per unit time equal in 
magnitude to that exchanged at the end walls in the 

absence of surface heating. In general, it may be anti- 
cipated that, as an upper limit, the parallel flow 
structure discussed previously cannot be preserved over 

distances greater than l’. A comparison of l’ with the 
physical length scale 1 of the cavity thus yields three 
limiting regimes, 1’ << 1,1’ - I and I’ >> I corresponding to 
the cases of large, moderate and small surface heat 

transfer. The case I’ >> I is of only modest interest since 
it reduces, at first order, to the case of an insulated 
surface which we have previously considered. On the 

other hand, the case I’ c I leads to velocity and tempera- 
ture distributions quite unlike those observed in the 
usual estuary flows. Hence, in the present discussion, 
we limit our considerations to the case I’ - I where the 
contributions of surface and end wall heat transfer are 
comparable. 

(a) Uniform surface heatjux 
In this section we consider the special case of 

constant, uniform surface heat transfer and zero surface 
shear stress. Thus, in (5), we put r0 = 0 and f(r) = q 
(constant), where q is the magnitude of the outwardly 
directed heat flux. In order that I - l’, as assumed, we 
require that the total heat flux per unit time through 
the upper surface of the cavity be of the same order 

of magnitude as the rate of heat exchange which would 
occur at the end walls in the absence of surface 
heating. Since the dimensionless heat flux through the 

end walls in the latter case is O(A) [see equation (12)], 
it thus follows that the dimensionless heat flux at the 
upper surface must be restricted to be of 0(.4’), i.e. 

where 

80 

sy )‘=I 

= -A2Q (21) 

is an arbitrary constant which is independent of A. 
With the heat flux through the surface constrained, 

the scaling arguments that were outlined in Section 3 
are still relevant and the core temperature and velocity 
fields are 

i/j = Qi+c, +A’PrGrQ 
i [ 

Q(l-2$ 1 
___ - - 

1920 360 

+PrGr{($-~+~)l.309xlO-’ 
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- 

+A’GrQ(Qx*+c,) L-- 
C 

5Y8 29~’ 
- 

12516 64512 + 161280 
.6 

- & 
5 

+ & - 5.977 x lo- sy3 + 3.049 x lo- SY2 

1.740 x lo-4y3 

+ 1,498 x 10-4y2 + 0(A3) (22a) 

0 = K,$+GrPrA2K~F(y)+K2 + ‘G - A2Qc 

+ PrGrA2(Q2g2 +2Qci@F(~) - 
PrGrQ2A2Z2 

1920 

- Pr2Gr2A2Q 

x 3.927 x lo-’ + 0(A4). (22b) 

As before, the coefficients of K1 and K2 were deter- 
mined by matching with the relevant solutions in the 
end regions in a manner which proceeds as outlined 
in the Appendix. One important result is that the first 
order stream function in the end region is identical to 
the free-surface solution, +,,. However, in order to 
obtain K, and Nu correct to 0(A3), it was necessary to 
obtain two new end region temperature solutions in 
addition to those outlined in the Appendix; one at 
O(A’) which can be expressed ~alyti~ly, and one at 
0(A3) which must be determined numerically. The 
result for K,S is 

K,=l-z+PrGrA’ 

x ($--$+:)3*927x10-‘]+PrGIA’ 

2*Wx10-3-PrGr 

As expected, equation (23) reduces to the insulated 
surface form [equation (18) with B = 0] in the limit 
as Q + 0. However, for nonzero Q, I(, is changed 
substantially even ar O(1). In addition, there is a 
correction to K, at O(A’), where previously there was 
no correction, as well as additional changes at 0(A3). 
Unfo~unately, the complex dependence of KI on Q 
prevents a more detailed comparison with previous 
results. 

In all of the cases considered previously, the Nusselt 
number, as defined in Section 3, has provided a direct 
measure of the flux of heat between the end walls of the 
cavity. In contrast, however, the introduction of a flux 
of heat through the top of the cavity leads to a 
horizontal flux of heat that is a function of horizontal 

fNote, e, = 1 -Q/2. 

position. Nevertheless, either the hot or cold end 
Nusselt number does provide a measure of the overall 
dispersive capacity of the cavity for heat (the choice 
depends on whether the “source” is located at the hot 
or cold end of the cavity). The result in the cold end is 

x T-F+ 3Q-1)1.31 x 10-j 

and 

+ 0(A4) (24) 

Nmot = N&old + QA. 

Upon comparing Nucold and Nuhot with the Nusselt 
number for an insulated surface [equation (1%) with 
B = 01, it may be observed that the heat enters through 
the hot end at a rate (Q/2)A slower than it does for the 
insulated boundary case and leaves through the cold 
end at a rate (Q/2)A faster than previously. Hence the 
heat added through the upper surface is “discharged” 
equally by the two ends of the cavity. 

With the undetermined constants specified, it is 
possible to examine in detail the core streamfunction 
and temperature distributions. Notably the parallel 
flow structure that was so evident in the previous cases 
is no longer present. Even at first order in A, the stream- 
lines are not parallel in the core 

II/* = (Qitl - ;)f.(~)+o(A~). 

More surprising, however, for IQ1 > 2, the ~ymptotic 
theory predicts that the first order stream function 
vanishes at 

A 
1 1 

““=2-Q, 

When Q > 2, $* is negative (clockwise circulation) for 
2 < PO and positive (counterclockwise circulation) for 
2 > P,. On the other hand, when Q < - 2, the opposite 
situation exists with counterclockwise circulation for 
% < Zo, and clockwise for P > f* This behavior of the 
first order velocity field, is intimately coupled with the 
first order temperature distribution 

$*= I-; ;+Q;+O(A’). 
C > 

A graphical comparison of the present temperature 
distribution and the previous insulated surface profile 
is shown in Fig. 5, where the first order temperature 
profiles are plotted for selected values of the surface 
heat flux. The positive values of Q represent surface 
cooling, hence the curves for Q > 0 are shifted down- 
ward relative to the insulated surface curve (Q = 0), 
while the curves for Q < 0 are shifted upward. With 
sufficient cooling (or heating), temperatures smaller 
(larger) than the cold end (hot end) tem~ratures are 
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FIG. 5. First order temperature profile for uniform surface heat flux. 

encountered within the cavity (cf. the curve for Q = 4). where T, is the surface temperature. For our present 
In particular, for Q > 2, 8* has a negative gradient for purposes we take T, equal to the cold end temperature 

P < &, and a positive gradient for 2 > &. The doubly so that the surface heat flux is a maximum at x* = 1 

circulating core flow encountered for IQ1 > 2 is a result and is a minimum (zero) at x^ = 0, and assume that 

of this change in sign of the temperature gradient. the surface shear stress is zero. As in the previous 

Although this characteristic of the core flow is very example, we consider only the case in which the total 

interesting, it is clearly of limited relevance in the con- surface heat transfer is constrained to be of the same 

text of the estuary flow since such extreme surface magnitude (with respect to A) as that which would 

cooling is unlikely to occur in the natural situation. occur at the end walls with K z 0. Hence, we consider 

Thus, it should be noted that if the boundary condition 

Q<l 

then, as indicated in Fig. 5, the first order tempera- 
ture and stream function profiles in the core are very 
similar to the insulated surface profiles, with the stream- 
lines nearly parallel, and the horizontal temperature 
gradient practically constant. 

where 

a0 
s= 

-HA20 on Y= 1 (25) 

is an arbitrary constant which is independent of A. 

(b) Heut fiux as ufimction ofsurface temperature 
The previous section dealt with a uniformly distri- 

buted surface heat flux. For an estuary this distribution 

of the heat flux is unrealistic since the net rate of heat 
exchange at any point on the surface is actually the 
sum of the rates at which heat is transferred by 
radiation, by evaporation, and by conduction between 
the water and the overlying air. Hence, the rate of 

heat transfer at each point on the surface must be 
specified as a function of the surface temperature as 
well as ambient variables such as wind speed, humidity 
and air temperature. Edinger, Duttweiler and Geyer 
[14] demonstrated that the net rate of heat transfer can 
be expressed most conveniently in terms of an effective 
thermal exchange coefficient K and an equilibrium 
temperature, T,, both of which depend on observable 
meteorological variables and change continuously in 
response to varying meteorological conditions. The 
interested reader is referred to Edinger et al. [14] for 
details concerning the evaluation of K and T,. The net 
heat-transfer rate becomes 

To obtain an asymptotic solution for the core region, 
which is valid in the limit A -+O with Gr, Pr and H 
held fixed, we utilized the scaling arguments and formal 
expansion in A outlined previously. The core solution, 
after matching, is 

-5.98x 10-5Y3+3.05x 10e5Y2+Pr L 
181440 

Y8 y7 
32 256 + 20 1.74 x 160 lo-5y3 

qnet = -K(T,-T,) 

+ 1.50 x lo-4L.2 _ H3,2 cash k,‘fWl 
sinh (JH) 

+ O(A3) (26a) 
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FIG. 6. First order temperature profile for surface heat flux a function of surface 
temperature. 
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FIG. 7. ~agnjtude of first order stream function for surface heat flux a function of 
surface temperature. 

@ = s’“h E(JH)x^l + A2 H sinh [&/H)$] y2 

smh(JH) - sinh(,/H) y 

+ 
PrCrH cosh2 [(&)a f 

sinh’ (JH) 
F(v) + ~a(?) 1 + 0(A3) (26b) 

where 

c&q = 
PrGrHcosh [2(4H)x^] 3.93 x 10W5P?GrZ 

sinh2 (JH)5760 - sinh3 (JH) 

Hsinh [3(JH)x”] H3j2 * 

32 
.-- + TV cash [(,/H);G] 

PrGrH H3!2X*cosh [(,/H)Z] 

- 640 sinh’ (JH) - 6 sinh (,/H) 

+ 3.93 x 1O_5 _ pr2Gr2 
sinh3 (JH) 

X 
H sinh (3,/H) + H3/’ cash (,/II) 

-. 

32 8 I 

As a result of the matching, it was also shown that 
the streamfunction for the cold end region is 

while the hot end stre~function is 

I,@-‘-x,y) = (JH)coth(~H)r,f&y)+O(A*) (28) 

where J10 is the same solution that was calculated for 
the zero shear case [Fig. 2(c)]. 

The behavior of the core solution in the limit as 
H + 0 is, of course, identical to the insulated surface 
case. An excellent indication of the influence of finite 
values of H is provided by the first order core solution, 
To facilitate discussion, we have plotted the first order 
temperature profile 

e 

0 
= sin,h [IQ’H)~ 

smh (JH) 

in Fig. 6 for selected values of H. In Fig. 7 we show 

(JH) Gosh CL/WI 
sinh (,/H) 

(as an indication of the core streamfunction magnitude), 
for the same values of H. Because the surface heat flux 
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is proportional to the difference between surface tem- 

perature and T,, a larger portion of the temperature 
drop occurs near the hot end of the cavity as H 
increases, thus causing increased temperature gradients 
in the hot end and decreased gradients in the cold 
end. These changes in the temperature profile are also 
reflected by the distribution of streamfunction in Fig. 7. 

The increased temperature gradient in the hot end 
increases the driving force for the core flow so that 

the streamfunction increases as H increases. The con- 
verse is true for the cold end. For the extreme case 
plotted, H = 100, $ is essentially zero for Z? < 0.5. This 

tendency for $ to approach zero at some distance 

far from the hot end wall hints of a limiting form of 
the solution as H -+ co, in which A is no longer a 
relevant parameter. Since the flow field does not occupy 
the entire cavity, it must be unaware of the cold end 

wall and hence independent of the dimensionless cavity 

length, A- I. In this sense, the flow behaves, for H -+ cc, 
as if the cavity were “semi-infinite”. Figures 6 and 7 
imply that the transition from “finite” to “semi-infinite” 

cavity occurs at H N 40. 
Upon applying the limit H -+ x; to the core solu- 

tion (26), we obtain a limiting form which is independent 

of A as previously anticipated, 

2PrGr e- 2c 

5760 

- 34% x 10-6Pr2Gr2 e-jt+ 5; 

For convenience, we have used the independent 

variable < which measures the horizontal distance into 
the cavity from the hot end, scaled with respect to h. 

In view of the expressions (27)-(29), it is apparent 
that the appropriate velocity and length scales in the 
limit N -+ X are 

(30) 

The latter is the length scale characterizing the rate of 

heat transfer through the cavity surface. This spon- 
taneous appearance of a new length scale provides an 
excellent opportunity to enlarge on the previous discus- 

sion relating the horizontal length scale of the core flow 
to the rate of surface cooling. To this end, Fig, 8 shows 
the fully matched first order streamfunction profiles for 

the semi-infinite cavity (H 4 cc) at two values of E. It is 
clear from these figures that as the heat transfer rate 
(c’) increases, the horizontal extent of the core flow is 

decreased proportionately. 
An examination of the semi-infinite cavity solution 

(equations 29) indicates that to ensure convergence, we 

must have F CC 1. This in turn suggests that a necessary 
condition for the validity of the analysis leading to the 
general solutions (26) is 

and 

HA’=%< 1. 
k 

To determine if the second inequality will be satisfied 

A << I 

+3*05x 10-SY2+PI ( Y9 YS 
under realistic conditions, it is useful to estimate the 

~ - ___ 
181440 32256 

magnitude of Kh/k. Field measurements indicate that, 
for an ambient wind speed of from 1 to 5m/s, K varies 

Y’ 
1.74 x lo- sv3 

between about 2.5 x 10m4 and 5.0 x 10-3cal(c”cm2s)-1. 

+20160 Furthermore, since estuary flows are invariably turbu- 

+ 1.50 x 104Y2))] + Ok 

lent, we estimate the effective thermal diffusivity to be 

(29a) of the order u*ht (cf. Fischer [12]), where u* is the 
“slip velocity” and is about 1 cm/s for horizontal fluid 
velocities of about lOcm/s, (The precise magnitude of 

the horizontal velocity will depend on Gr, Pr, A and 
H.) Hence, 

lim 8 = e-F+E2 
H-m 1 

-e-f G + PrGre-*<F(y) 

+ PrGrep2c 

5760 
- 1.23 x lo- 6Pr2Gr2 e- 3f 

Kh 
-iv 10-4 
k 

for typical estuary flows. 

The heat-transfer characteristics for the present 

in which 

- $$ II 
surface boundary condition are quite different from the 

+ 0(c3) (29b) insulated surface case. Once again, because heat is 
removed through thesurfaceof the cavity, the horizontal 
heat flux is a function of horizontal position. The 

g=&i and E = Here we have assumed that the turbulent Prandtl number 
is -1. 
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FIG. 8. Streamlines for semi-infinite cavity. 

Nusselt number is therefore a maximum at the hot end 

iVaot = A(JH)coth(JH)+z43~rGrH3’z(cot;$H) 

sinh (2 JH) 

’ 2880 sinh (JH) > 
-y coth (JH) 

- 3.927 x 10-5 
Pr2Gr2 H2 

I 
- sinh (JH) 

sinh3 (JH) 8 

-JHcoth(JH) asinh(3JH) 
i 

+ Fcosh(JH) 
i 

3H312 
+ ,,cosh(3JH) 

+ycosh(JH) -;(l-coth’(JH)) 
1 

+ PrGrH”’ { 1.309 x lo-‘PrGr coth3 (,/H) 

-1.74x 10-3coth(JH)} + O(A4) (31) 

and is a minimum at the cold end 
1 

&old = AJH +A3[-sin;;H)(; 
sinh (,/H) 

+859x lO-‘j 
Pr2Gr2 PrGr 

sinh2 (,/H) + 576 

- Pr2Gr2(1.309 x lo-‘) _ 1 227x 1o_6 

sinhZ(,/H) ’ 

Pr2Gr2 

’ sinh3(JH) 
sinh(3JH) 

> 
+ 4.91 x 10e6 

Pr2Gr2H2 

’ sinh4 (JH) 
cash (,,/‘H) 

+ H2 coth (JH) 

6sinh(JH) 1 + O(A4). (32) 

In the limit as H +O, these expressions for Nu 
reduce to that found for the insulated free-shear surface. 
Unfortunately, the complexity of expressions (31) and 
(32) precludes a detailed comparison with Nusselt 
numbers for the previous cases. 

1. 

2. 

3. 

4. 

5. 

6. 
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.APPENDlX A 

To demonstrate the matching procedure used in the paper, 
we consider the simplest case, that of an insulating, free 
surface (te = 0) at the top of the cavity. Subject to the 
assumption that the surface is flat, boundary conditions (5) 
become 

The problem is otherwise the same as that outlined in 
Section 3, and the horizontal scaling arguments remain 
valid. Thus, the core solution consistent with the conditions 
(A.1) may easily be shown to be 

(A.21 

0 = K,iZ + KfGrPrA2 (A.3) 

Both K, and K2 are polynomials in A, with coefficients which 
must be determined by matching (A.2) and (A.3) with solu- 
tions which are valid in the ends of the cavity. For the no-slip 
surface, the centro-symmetry property of the equations and 
boundary conditions allowed K, to be eliminated in favor of 
KI, so that the matching had to be carried out explicitly 
only in the cold end of the cavity. In the present example, 
and, indeed, in all of the problems considered in the present 
work, this simplification is not possible so that it is necessary, 
in principle, to carry out the detailed matching explicitly in 
both ends of the cavity. As we shall see, however, certain 
symmetry relationships are still useful in simplifying the 
problem. 

In the cold end, the original equations (I), (2) and (3) 
must be solved, subject to the boundary conditions (4) and 
(A.1) for y = 0, 1 and x = 0, so that they match with the 
core solution according to 

Jim $ = (cr + Ac2 + .)F’(y) (A.4) 
X-CC 

limO=(c,+Ac,+...)~+(c,+A~,+...)~GrPrA~F(y) 
x-cc 

+(c;+Ac;+...). (A.5) 

Here 

and the prime in F’(y) denotes differentiation with respect 
to y. 

In the hot end of the cavity, it is convenient to express 
the equations and matching conditions in terms of the trans- 
formed variables 

< = (A- ‘-.x) 

g = (1 -y) 

0=1-u 

so that the form of the equations remains unchanged 

GrA* yz w 
~ = AV’R + $ 

(‘(5.4 
(A.6) 

V2Y = -0 

PrGrA %!?! = V=@ 
S(& rl) 

but the boundary conditions become 

(A.7) 

(A& 

Here, Y and R denote the stream function and vorticity in 
the hot end. The transformed matching conditions are 

,‘lf”nY = ((.I +/tc,+ . ..)F’(l -Y/) 

lim(l-O)=(cL+AcZ+..,)(l-@) 
i-ra 

+(c, + AC, + .)‘GrPrA’F(l -q) 

+(C;+kc;+...). 

A solution in each of the hot and cold ends can be 
obtained as a regular expansion in .4, i.e. 

r/~=Il/~+All/,+...; O=&,+AB,+... (cold) 

Y=Y’,+AY,+...: @=@,+A@,+... (hot) 

We have listed the appropriate equations and matching 
conditions at each order in A in Table 1. 

To initiate the solution of these equations, we note that 
the temperature functions O0 and 0, are both identically 
zero, so that to satisfy the matching constraints (Cl) and 
(Hl) it follows that 

c; = 0 

cr = 1. 

Because 0, is zero, equation (C3) reduces to V’f3, = 0 and 
can be solved independently from (C2) to yield 

8, =x 

with the corresponding result from the matching condition 

(C5) 

c; = 0 

Similarly, in the hot end, 

0, = 5 

and the condition (H5) yields 

c* = 0. 

In light of these results, equations (C2) and (H2) may now 
be solved to yield the O(1) contributions to the flow field 
in the hot and cold end. Substituting the solutions for 0r 
and Or into these equations, we obtain for the cold end 

v41/?o = 1 (A.10) 

with matching condition 
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Table 1. End region equations and matching conditions for r0 = 0 
- ..______.- 

Cold end Hot end 

a@0 
O(I) dx = 0 

Gm_ %Q = C*’ (Cl) 

v25a =o 

(C2) 

v725, = PrGrZ 

lim +kO = C,F’(y) 
x-m 
lim 5, = C,x+Cz’ 
x-m 

882 &kJ. $0) 
O(A’) V41jr, =ax- Gr- 

8x, Y) 

v2e2 
= PrGr aPI> $0) + a(509 $1) 

8x, Y) a(x, Y) 1 
lim $, = &F’(y) 
x-m 
hrl e2 = C,x + CfGrPrF(y) $ C; 

G(A3) V4rjr, 

lim Gz = &F’(y) 
r-m 
lim 5s = C3x + 2C, C,GrPrF(y) + Ci 
X-m 

(Cl?) 

(Cl3) 

(HI) 

tH2) 

(H3) 

(H4) 

(H5) 

(H6) 

(H7) 

(HS) 

(H9) 

/ii? Y’z = C,F’(l -q) (H12) 

j[T 0~ = C3<--C4-2CIC2GrPrF(1 -v)-Ci (H13) 

and for the hot end 

with 

V4Yo = 1 

From these equations, it is clear that the hot end stream 
function, Y’,, can be expressed in terms of the cold end 
distribution by 

tick Y) = Y,(a, 1 -Y). 

It is therefore necessary to obtain only one of the hot or 
cold end solutions at this level of approximation, We 
consider the function $,, in the cold end. 

We have shown in [9] that it is possible to obtain an 
analytical solution for *a. However, the resulting solution 
is extremely cumbersome and becomes completely unwieldy 
for evaluating higher order solutions. On the other hand, 
numerical solution of equation (A.lO) with appropriate 
boundary conditions is relatively str~ghtforward and for the 
present purposes is sufficient. In order to obtain this solu- 
tion, the equation (A.lO) was approximated by a central 
difference representation on a geometrically expanding grid 
of twenty-one points in the x-direction and a uniform grid 
of twenty-one points in the y-direction and solved using 
an explicit Gauss-Seidel iterative scheme. Details of the 
calculation may be obtained from [9]. The resulting stream- 
lines of e0 are presented in Fig. Z(c). 

We turn now to consider the solution at O(Az) for 0. 
Taking the preceding results into account, the governing 
equation (C5) in the cold end becomes 

V2%2 = prGr?S? 
?? 

with the matching condition 

lim Hz = GrPrF(y) + c;. 
x-m 

(A.1 1) 

The matching at this order in A can be accomplished most 
effectively by considering the integral of equation (A.1 1) over 
the depth of the cavity. Carrying out this integration, 
we obtain the ordinary differential equation for 

d2H 
-_=O 
dx’ 

(A.12) 

with the integrated boundary conditions 

H=O on x=0 (A. 13a) 

s 

I 
lim H = GrPr F(p)dY+c;. (A.13b) 
x-m 0 

The only solution of equation (A.12) consistent with the 
conditions (A.13) is the trivia1 solution 

H=O 
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for all x. Hence, it follows that 

c; = -GrPr Q)dy = - ;?$ 

A similar integral analysis of equation (HS) indicates that 

cj = 0. 

In order to carry the asymptotic solution to higher orders 
in A, it is necessary to determine the detailed distribution 
of t& in the end region. This was done using the same 
numerical procedure and grid spacing as described pre- 
viously for $e. It may also appear that an independent 
numerical solution must be obtained for 0,; however, this 
is not the case. Rather, by considering the relationship 
between $a and Y0 and the relationship between the 
boundary conditions on e2 and Os, it is possible to show that 

O,(a, y) = - O,(cc, 1 -7). 

Finally, it would now be possible to obtain a numerical 
solution for $i. However, our main interest in continuing the 
expansion to higher order in A is to obtain the first non- 
trivial corrections to Ki and Nu. For this purpose, it is 
sufficient to note that $i must satisfy the condition 

lim$, = 0. 
x-m 

The first nonzero correction to K1 comes from the coeffi- 
cient c., (note c2 = ca = 0). To obtain cq, we must consider 
the problem (C7) and (C9) for 6s. This equation, plus 
matching condition, is simplified by our preceding results to 

with 

limo, = ck. 
x-m 

Utilizing the linearity of this problem, we can conveniently 
consider 0s and CL as consisting of two parts 

83 = R,+B, 

and 

c; = i;>+?, 

where 

with 

(A.15) 

and 

lim 6s = & 
X-m 

V*&$ = PrGrE 
X, 

(A.16) 

with 

A consideration of the integral of equation (A.15) across the 
depth of the cavity yields the result 

s 

1 
6sdy f 0 

0 

for all x, so that 
& = 0. 

On the other hand, such an integral analysis of equation 
(A.16) yields no information concerning Zk. Instead, rk must 
be determined by numerically solving equation (A. 16) subject 
to the boundary condition (see [9]) 

This procedure yields both the unique solution for &, and 
the numerical value 

ek = 9.58 x 10-6Gr2Pr2. 

In the same manner that the relationship between & and 
O2 was deduced previously, it is also possible to show that 

&(a, y) = &(a, 1 -v). 

In particular, therefore, the matching condition for O3 
requires 

cq = -2&. 

This completes the solution to the desired level of approxi- 
mation 


